自定义博客皮肤VIP专享

    *博客头图:

    格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

    请上传大于1920*100像素的图片!

    博客底图:

    图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

    栏目图:

    图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

    主标题颜色:

    RGB颜色,例如:#AFAFAF

    Hover:

    RGB颜色,例如:#AFAFAF

    副标题颜色:

    RGB颜色,例如:#AFAFAF

    自定义博客皮肤

    -+
    • 博客(190)
    • 资源 (4)
    • 收藏
    • 关注

    原创 JUC等待唤醒机制

    AQS是一种思想,他设置了状态位state标志能不能获取得到同步资源,FIFO等待队列进行资源分配,带有头尾节点的双向链表也实现了公平性, AQS为同步组件提供了一个框架,使得创建新的同步组件变得容易。WaitSet 中的 Thread-0,是以前获得过锁,但条件不满足进入 WAITING 状态的线程(wait-notify 机制),在notify后,因为此时条件变量WaitSet中只有Thread-0,所以Thread-0被唤醒,如果有多个线程,则唤醒随机一个。

    2024-08-15 10:36:59 926

    原创 飞书工作台小组件开发流程(各种鉴权token介绍+公告栏小组件示例Java后端+飞书开发者工具前端)

    如果你的业务逻辑不需要操作用户的数据资源,仅需操作应用自己拥有的资源(比如在应用自己的文档目录空间下创建云文档),则推荐使用 Tenant Access Token,无需额外申请授权。文件夹 folder_token: https://sample.feishu.cn/drive/folder/cSJe2JgtFFBwRuTKAJK6baNGUn0。User Access Token 代表使用应用的使用者的身份操作 OpenAPI,API 所能操作的数据资源范围受限于用户的身份所能操作的资源范围。

    2024-08-13 23:16:50 1639

    原创 Leaf——美团点评分布式ID生成系统

    Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。

    2024-02-03 23:45:56 1782

    原创 算法练习04——数组问题

    【代码】算法练习04——数组问题。

    2024-02-03 23:28:54 313

    原创 JUC并发编程02——线程原理(运行机制,线程调度,未来优化)

    Java Virtual Machine Stacks(Java 虚拟机栈):每个线程启动后,虚拟机就会为其分配一块栈内存线程上下文切换(Thread Context Switch):一些原因导致 CPU 不再执行当前线程,转而执行另一个线程程序计数器(Program Counter Register):记住下一条 JVM 指令的执行地址,是线程私有的。

    2024-02-02 23:28:52 632

    原创 算法练习03——滑动窗口

    【代码】算法练习03——滑动窗口。

    2024-02-02 19:38:25 237

    原创 JUC并发编程01——进程,线程(详解),并发和并行

    进程:程序是静止的,进程实体的运行过程就是进程,是系统进行资源分配的基本单位进程的特征:并发性、异步性、动态性、独立性、结构性线程:线程是属于进程的,是一个基本的 CPU 执行单元,是程序执行流的最小单元。线程是进程中的一个实体,是系统独立调度的基本单位,线程本身不拥有系统资源,只拥有一点在运行中必不可少的资源,与同属一个进程的其他线程共享进程所拥有的全部资源关系:一个进程可以包含多个线程,这就是多线程,比如看视频是进程,图画、声音、广告等就是多个线程。

    2024-02-01 23:31:42 976

    原创 算法练习02——双指针

    交点不是数值相等,而是指针相等。

    2024-02-01 21:28:47 226

    原创 算法练习01——哈希&&部分双指针

    由于字符串只包含小写字母,因此对于每个字符串,可以使用长度为 262626 的数组记录每个字母出现的次数。需要注意的是,在使用数组作为哈希表的键时,不同语言的支持程度不同,因此不同语言的实现方式也不同。由于互为字母异位词的两个字符串包含的字母相同,因此两个字符串中的相同字母出现的次数一定是相同的,故可以将每个字母出现的次数使用字符串表示,作为哈希表的键。由于互为字母异位词的两个字符串包含的字母相同,因此对两个字符串分别进行排序之后得到的字符串一定是相同的,故可以将排序之后的字符串作为哈希表的键。

    2024-01-31 23:43:35 356

    原创 SpringCloudAlibaba组件总结笔记(如Nacos、SpringCloudGateway、OpenFeign,Ribbon,RabbitMQ)

    代码方式:在order-service中的OrderApplication类中,定义一个新的IRule:@Bean配置文件方式:在order-service的application.yml文件中,添加新的配置也可以修改规则:userservice: # 给某个微服务配置负载均衡规则,这里是userservice服务ribbon:NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule # 负载均衡规则注意。

    2024-01-31 15:46:34 1734

    原创 基于Hexo框架搭建个人博客(Node.js、npm、Hexo框架以及Gitee新手教程)

    现在,你已经成功使用Node.js、npm、Hexo框架和Gitee生成了一个博客系统。你可以通过访问你的Gitee仓库地址来查看部署的博客系统。首先,你需要在Gitee上创建一个新的仓库,用于存储博客系统的静态HTML文件。目录下找到刚创建的Markdown文件,使用文本编辑器打开并进行编辑。目录下创建一个名为 “Hello World” 的Markdown文件,用于编写博客文章内容。这将自动将生成的静态HTML文件部署到你在Gitee上创建的仓库中。创建一个新的Hexo博客项目。安装博客所需的依赖包。

    2023-12-03 22:15:56 300

    原创 PageHelper——分页插件

    PageHelper是一款优秀的分页插件,它能够方便地在Spring Boot应用中实现分页查询功能。在大多数应用中,数据量通常很大,如果一次性加载全部数据,不仅会占用大量的内存,还会导致查询速度变慢。而通过使用PageHelper,我们可以将数据分页加载,提高查询效率,同时也能够更好地满足用户需求。在Spring Boot应用中使用PageHelper非常简单,只需要进行几步配置即可。首先,我们需要在项目的pom.xml文件中添加PageHelper的依赖。

    2023-12-03 22:07:38 479

    原创 Spring——IOC,DI,AOP

    IOC、DI和AOP是Spring框架的三大核心特性,它们在不同的场景下起到了不同的作用。IOC通过控制反转将对象的创建和管理交给了Spring容器,提高了代码的可维护性和可测试性;DI通过依赖注入解决对象之间的依赖关系,减少了对象之间的耦合度;以上是它们的适用场景、作用、实现原理以及相关的解释和示例代码。其中,IOC(控制反转)、DI(依赖注入)和AOP(面向切面编程)是Spring框架的三大核心特性。本文将详细介绍这三个特性的适用场景、作用、实现原理,并提供相关的解释和示例代码。二、DI(依赖注入)

    2023-12-03 20:07:35 135

    原创 AOP面向切面编程——实现公共字段填充

    进入到sky-server模块,创建com.sky.annotation包。1). 自定义注解 AutoFill,用于标识需要进行公共字段自动填充的方法2). 自定义切面类 AutoFillAspect,统一拦截加入了 AutoFill 注解的方法,通过反射为公共字段赋值3). 在 Mapper 的方法上加入 AutoFill 注解若要实现上述步骤,需掌握以下知识(之前课程内容都学过)**技术点:**枚举、注解、AOP、反射

    2023-12-03 15:15:13 247

    原创 Spring——全局异常处理(介绍@RestControllerAdvice和@ExceptionHandler)

    同时,我们也了解到了全局异常处理器的灵活性和自定义性,使得我们可以根据业务需要,对不同类型的异常进行细粒度的处理。@ExceptionHandler注解的实现原理是通过定义一个带有@ExceptionHandler注解的方法,在方法中编写异常处理的逻辑。多个@ExceptionHandler注解的方法可以处理不同类型的异常,但是它们的执行顺序是根据异常的继承关系来确定的。这使得我们可以根据具体的异常类型,编写相应的处理逻辑,实现异常的细粒度处理。这样,前端可以根据不同的响应信息进行相应的处理和展示。

    2023-12-02 16:06:08 482

    原创 Swagger——接口文档自动生成和测试

    Swagger 是一个规范和完整的框架,用于生成、描述、调用和可视化 RESTful 风格的 Web 服务(它的主要作用是:使得前后端分离开发更加方便,有利于团队协作接口的文档在线自动生成,降低后端开发人员编写接口文档的负担功能测试Spring已经将Swagger纳入自身的标准,建立了Spring-swagger项目,现在叫Springfox。通过在项目中引入Springfox ,即可非常简单快捷的使用Swagger。

    2023-12-02 10:32:31 573

    原创 登录校验——JWT(JSON Web Token)介绍

    JWT(JSON Web Token)是一种在Java前后端分离项目中实现登录功能的常用方式。本文将对前后端的分析,JWT在前后端的联系以及其在登录功能中的作用和优缺点进行详细介绍。

    2023-12-01 22:16:03 489

    原创 nginx配置反向代理及负载均衡

    当在访问http://localhost/api/employee/login,nginx接收到请求后转到http://localhost:8080/admin/,故最终的请求地址为http://localhost:8080/admin/employee/login,和后台服务的访问地址一致。location /api/ {} 这样的反向代理到 http://localhost:8080/admin/上来。所谓负载均衡,就是把大量的请求按照我们指定的方式均衡的分配给集群中的每台服务器。

    2023-12-01 22:02:07 954

    原创 JVM——产生内存溢出原因

    但是由于用户的并发请求量有可能很大,同时处理数据的时间很长,导致大量的数据存在于内存中,最终超过了内存的上限,导致内存溢出。这类问题的处理思路和内存泄漏类似,首先要定位到对象产生的根源。在使用HashMap的场景下,如果使用这个类对象作为key,HashMap在判断key是否已经存在时会使用这些方法,如果重写方式不正确,会导致相同的数据被保存多份。⚫ 1、非静态的内部类默认会持有外部类,尽管代码上不再使用外部类,所以如果有地方引用了这个非静态内部类,会导致外部类也被引用,垃圾回收时无法回收这个外部类。

    2023-11-29 21:43:55 542

    原创 JVM——内存溢出和内存泄漏

    ⚫ Arthas 是一款线上监控诊断产品,通过全局视角实时查看应用 load、内存、gc、线程的状态信息,并能在不修改应用代码的情况下,对业务问题进行诊断,包括查看方法调用的出入参、异常,监测方法执行耗时,类加载信息等,大大提升线上问题排查效率。⚫ 少量的内存泄漏可以容忍,但是如果发生持续的内存泄漏,就像滚雪球雪球越滚越大,不管有多大的内存迟早会被消耗完,最终导致的结果就是内存溢出。⚫ 内存泄漏导致溢出的常见场景是大型的Java后端应用中,在处理用户的请求之后,没有及时将用户的数据删。

    2023-11-29 20:21:21 584

    原创 JVM——垃圾回收器(Serial,SerialOld,ParNew,CMS,Parallel Scavenge,Parallel Old)

    为什么分代GC算法要把堆分成年轻代和老年代?⚫ 系统中的大部分对象,都是创建出来之后很快就不再使用可以被回收,比如用户获取订单数据,订单数据返回给用户之后就可以释放了。⚫ 老年代中会存放长期存活的对象,比如Spring的大部分bean对象,在程序启动之后就不会被回收了。⚫ 在虚拟机的默认设置中,新生代大小要远小于老年代的大小分代GC算法将堆分成年轻代和老年代主要原因有:1、可以通过调整年轻代和老年代的比例来适应不同类型的应用程序,提高内存的利用率和性能。

    2023-11-27 19:56:13 476

    原创 JVM——垃圾回收器(G1,JDK9默认为G1垃圾回收器)

    JDK9之后默认的垃圾回收器是G1(Garbage First)垃圾回收器。Parallel Scavenge关注吞吐量,允许用户设置最大暂停时间 ,但是会减少年轻代可用空间的大小。CMS关注暂停时间,但是吞吐量方面会下降。而G1设计目标就是将上述两种垃圾回收器的优点融合:1.支持巨大的堆空间回收,并有较高的吞吐量。2.支持多CPU并行垃圾回收。3.允许用户设置最大暂停时间。

    2023-11-27 19:52:35 625

    原创 JVM——垃圾回收算法(垃圾回收算法评价标准,四种垃圾回收算法)

    ⚫ Java是如何实现垃圾回收的呢?简单来说,垃圾回收要做的有两件事:1、找到内存中存活的对象2、释放不再存活对象的内存,使得程序能再次利用这部分空间⚫ 1960年John McCarthy发布了第一个GC算法:标记-清除算法。⚫ 1963年Marvin L. Minsky 发布了复制算法。本质上后续所有的垃圾回收算法,都是在上述两种算法的基础上优化而来。

    2023-11-26 10:55:51 348

    原创 JVM——几种常见的对象引用

    可达性算法中描述的对象引用,一般指的是强引用,即是GCRoot对象对普通对象有引用关系,只要这层关系存在,普通对象就不会被回收。除了强引用之外,Java中还设计了几种其他引用方式:⚫ 软引用⚫ 弱引用⚫ 虚引用⚫ 终结器引用。

    2023-11-25 23:23:03 597

    原创 JVM——垃圾回收(方法区中的垃圾回收和(堆回收)自动垃圾回收)

    ⚫ 在C/C++这类没有自动垃圾回收机制的语言中,一个对象如果不再使用,需要手动释放,否则就会出现内存泄漏。我们称这种释放对象的过程为垃圾回收,而需要程序员编写代码进行回收的方式为手动回收。⚫ 内存泄漏指的是不再使用的对象在系统中未被回收,内存泄漏的积累可能会导致内存溢出。

    2023-11-25 22:51:02 680

    原创 JVM——运行时数据区(堆+方法区+直接内存)

    ⚫ JDK8将方法区存放在元空间中,元空间位于操作系统维护的直接内存中,默认情况下只要不超过操作系统承受的上限,可以一直分配。当常量池加载到内存中之后,可以通过内存地址快速的定位到常量池中的内容,这种常量池称为运行时常量池。⚫ JDK8及之后的版本将方法区存放在元空间中,元空间位于操作系统维护的直接内存中,默认情况下只要不超过操作系统承受的上限,可以一直分配。⚫ used指的是当前已使用的堆内存,total是java虚拟机已经分配的可用堆内存,max是java虚拟机可以分配的最大堆内存。

    2023-11-16 21:19:29 734

    原创 JVM——运行时数据区(程序计数器+栈)

    ⚫ Java虚拟机在运行Java程序过程中管理的内存区域,称之为运行时数据区。⚫ 《Java虚拟机规范》中规定了每一部分的作用。

    2023-11-16 12:36:28 469

    原创 JVM虚拟机——类加载器(JDK8及以前,打破双亲委派机制)(JDK9之后的类加载器)

    ⚫ 一个Tomcat程序中是可以运行多个Web应用的,如果这两个应用中出现了相同限定名的类,比如Servlet类,Tomcat要保证这两个类都能加载并且它们应该是不同的类。⚫ 如果不打破双亲委派机制,当应用类加载器加载Web应用1中的MyServlet之后,Web应用2中相同限定名的MyServlet类就无法被加载了。⚫ Tomcat使用了自定义类加载器来实现应用之间类的隔离。每一个应用会有一个独立的类加载器加载对应的类。

    2023-11-15 21:49:20 307

    原创 JVM——类加载器(JDK8及之前,双亲委派机制)

    JDK中默认提供了多种处理不同渠道的类加载器,程序员也可以自己根据需求定制继承自抽象类ClassLoader所有Java中实现的类加载器都需要继承ClassLoader这个抽象类。

    2023-11-15 20:50:16 682

    原创 JVM——类的生命周期(加载阶段,连接阶段,初始化阶段)

    几个要点:1.静态变量的定义使用final关键字,这类变量会在准备阶段直接进行初始化(除非要执行方法)。2.直接访问父类的静态变量,不会触发子类的初始化。子类的初始化cinit调用之前,会先调用父类的cinit初始化方法。

    2023-11-02 13:46:04 773

    原创 springmvc视图格式——模板引擎freemarker输出HTML文本

    ​ FreeMarker 是一款 模板引擎: 即一种基于模板和要改变的数据, 并用来生成输出文本(HTML网页,电子邮件,配置文件,源代码等)的通用工具。它不是面向最终用户的,而是一个Java类库,是一款程序员可以嵌入他们所开发产品的组件。​ freemarker作为springmvc一种视图格式,默认情况下SpringMVC支持freemarker视图格式。需要创建Spring Boot+Freemarker工程用于测试模板。

    2023-10-19 21:03:46 1085

    原创 SpringCloud微服务文章列表加载(注册发现和配置中心Nacos、服务调用SSM、XML文件编写进行复杂的多表查询,网关gateway添加微服务路由)(项目概况,SSM细节总结)

    加载首页加载更多加载最新接口路径请求方式POSTPOSTPOST参数响应结果// 最大时间 Date maxBehotTime;// 最小时间 Date minBehotTime;// 分页size Integer size;// 频道ID String tag;// 最大时间 Date maxBehotTime;// 最小时间 Date minBehotTime;// 分页size Integer size;// 频道ID String tag;Date;

    2023-10-19 20:53:29 195

    原创 SpringCloud微服务(注册发现Nacos、服务调用SSM、网关gateway)项目环境搭建(项目概况,SSM细节总结)

    (2)在heima-leadnews-gateway下创建heima-leadnews-app-gateway微服务。引入依赖,在heima-leadnews-model和heima-leadnews-common模块中引入该依赖。启动user微服务,访问地址:http://localhost:51801/swagger-ui.html。md5是不可逆加密,md5相同的密码每次加密都一样,不太安全。在heima-leadnews-service下创建工程heima-leadnews-user。

    2023-10-19 00:47:09 952

    原创 SpringCould微服务保护和授权规则03——隔离和降级(FeignClient整合Sentinel,线程隔离,熔断降级,自定义异常结果,规则持久化,实现push模式)

    线程隔离(仓壁模式)降级熔断在application.yml中配置:feign.sentienl.enable=true给FeignClient编写FallbackFactory并注册为Bean将FallbackFactory配置到FeignClient线程隔离的两种手段是?信号量隔离线程池隔离信号量隔离的特点是?基于计数器模式,简单,开销小线程池隔离的特点是?基于线程池模式,有额外开销,但隔离控制更强默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。

    2023-10-14 10:54:04 640

    原创 SpringCould微服务保护02——三种流控模式(直接,关联,链路)和四种流控效果(快速失败,Worm up,排队等待,热点参数限流)(Sentinel组件高级选项选择+Jmeter压测演示)

    流控模式有哪些?•直接:对当前资源限流•关联:高优先级资源触发阈值,对低优先级资源限流。•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流流控效果有哪些?快速失败:QPS超过阈值时,拒绝新的请求warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝。

    2023-10-13 19:57:08 396

    原创 SpringCould微服务保护01——Sentinel组件下载并使用

    什么是雪崩问题?微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.htmlSentinel 具有以下特征:•丰富的应用场景。

    2023-10-13 18:53:15 1418

    原创 elasticsearch(ES)分布式搜索引擎04——(数据聚合,自动补全,数据同步,ES集群)

    默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smarttokenizer filter:将tokenizer输出的词条做进一步处理。

    2023-10-12 11:23:33 1806

    原创 elasticsearch(ES)分布式搜索引擎03——(RestClient查询文档,ES旅游案例实战)

    elasticsearch(ES)分布式搜索引擎03——(RestClient查询文档,ES旅游实体类有两个,一个是前端的请求参数实体,一个是服务端应该返回的响应结果实体。1)请求参数"key": "搜索关键字","page": 1,"size": 3,因此,我们在Data;@Data2)返回值total:总条数:当前页的数据因此,我们在} }} }List;@Data请求方式:Post请求路径:/hotel/list请求参数:对象,类型为RequestParam返回值:PageResult,包含两个属性。

    2023-10-11 18:48:16 1387

    原创 elasticsearch(ES)分布式搜索引擎02——(DSL查询文档,搜索结果处理)

    (DSL查询文档,搜索结果处理)match和multi_match的区别是什么?match:根据一个字段查询multi_match:根据多个字段查询,参与查询字段越多,查询性能越差精确查询常见的有哪些?term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段range查询:根据数值范围查询,可以是数值、日期的范围query:查询条件from和size:分页条件sort:排序条件highlight:高亮条件。

    2023-10-11 13:15:35 461

    原创 elasticsearch(ES)分布式搜索引擎01——(初识ES,索引库操作和文档操作,RestClient操作索引库和文档)

    什么是elasticsearch?一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能什么是elastic stack(ELK)?是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch什么是Lucene?是Apache的开源搜索引擎类库,提供了搜索引擎的核心API分词器的作用是什么?创建倒排索引时对文档分词用户搜索时,对输入的内容分词IK分词器有几种模式?ik_smart:智能切分,粗粒度。

    2023-10-11 00:05:46 1530

    • <
    • 1
    • 2
    • 3
    • 4
    • 5
    • >

    python毕业设计基于opencv车牌识别的停车场收费系统源码(高分毕设项目) +文档

    python毕业设计基于opencv车牌识别的停车场收费系统源码(高分毕设项目) +文档视频本工程目前实现的功能如下:实现类似停车场环境下,单车辆的车牌识别和定位 模型选择 车牌定位模型 考虑只需要定位一个车牌,加上在寻找数据集的时候找到了CCPD数据集,定位模型就选择了CCPD中提到的wR2模型 车牌判别模型 因为是二分类,所以定义了一个相对简单的卷积神经网络二分类模型 车牌号识别 考虑到新能源车牌号为八位,而普通车牌为七位。所以这里采用了LPRnet的结构,并做了一点点改进。这样就可以涵盖两种不同的车牌。 改进如下: 考虑到原模型的输入图片较小,故修改了模型的输入,同时在模型最前面加入了一个简单的卷积层,目的是希望能够输入相对大一点,清晰一点的图片,以便进一步提高准确率 注: 为了预防在定位车牌是出现细微偏差,导致影响车牌识别性能,故定位车牌后对边框进行了一放大,同时也能进一步是银行这里提到的对LPRnet的改进。 数据集选择 车牌定位模型数据集 采用CCPD的数据集,输出为车牌位置左上角和右下角的坐标 车牌判别模型数据集 采用一些收集到的不是车牌的数据集和从CCPD中

    2025-03-11

    Java课程设计-springboot学生成绩管理系统源码+数据库+文档

    课程设计-学生成绩管理系统-StudentAchievementManagementSystem 介绍 软件架构 效果展示 使用说明 课程设计-学生成绩管理系统-StudentAchievementManagementSystem 介绍 这个项目是当时刚开始学习javaweb的时候,老师要求写的一个课程设计,就是写一个简单的学生成绩管理系统,能够实现以下业务需求: ①系统用户角色:教师和学生; ②登录管理模块:主要完成教师和学生的登录; ③教师功能:班级管理(班级添加与浏览);课程管理(课程添加与浏览);学生管理(学生添加与浏览);成绩管理(成绩录入、浏览与编辑) ④学生功能:查询(浏览)自己的成绩 当时是新手,写得有些稀烂,但是基本功能都实现了。 软件架构 输入图片说明 数据库设计: 输入图片说明 效果展示 输入图片说明 输入图片说明

    2025-03-11

    Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档

    Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-javaweb学生成绩管理系统源码+数据库+报告文档Java课程设计-j

    2025-03-11

    Python毕业设计-学生校园消费行为分析源码+数据+结果集

    基于Python的学生校园消费行为分析源码+数据+结果集 retail 学生校园消费行为分析 校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记 录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年1 月27日的报道:《南理工给贫困生“暖心饭卡补助”》。 不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”项目,针对特困生的温饱问 题进行“精准援助”。 项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生9月中旬到11月中旬的刷卡记 录,对所有的记录进行了大数据分析。最终圈定了500余名“准援助对象”。 南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中, 保证困难学生能够吃

    2025-03-11

    基于Python的学生校园消费行为分析源码+数据+结果集

    基于Python的学生校园消费行为分析源码+数据+结果集 retail 学生校园消费行为分析 校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记 录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年1 月27日的报道:《南理工给贫困生“暖心饭卡补助”》。 不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”项目,针对特困生的温饱问 题进行“精准援助”。 项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生9月中旬到11月中旬的刷卡记 录,对所有的记录进行了大数据分析。最终圈定了500余名“准援助对象”。 南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中, 保证困难学生能够吃

    2025-03-11

    Python量化交易策略及回测系统源代码+全部数据(高分项目)

    Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Python量化交易策略及回测系统源代码+全部数据(高分项目)Pyth

    2025-03-11

    python基于卷积神经网络进行网络入侵检测系统源码+文档+数据集(正确率可达99.5%)

    python毕业设计——基于卷积神经网络进行网络入侵检测系统源码+文档+数据集(正确率可达99.5%) IDS-CNN(使用卷积神经网络进行网络入侵检测) handle2.py为数据预处理代码 main.py为一层全连接层处理kddcup.data_10_percent_corrected_handled2.cvs数据代码 cnn_mian.py为卷积神经网络处理kddcup.data.corrected_handled2.cvs数据的代码 以上两个数据集由文件夹中两个.gz文件解压得到 multi_logs文件夹记录了训练过程中TensorFlow中张量的变化及模型准确率和loss的变化日志(tensorbord)IDS-CNN(使用卷积神经网络进行网络入侵检测) handle2.py为数据预处理代码 main.py为一层全连接层处理kddcup.data_10_percent_corrected_handled2.cvs数据代码 cnn_mian.py为卷积神经网络处理kddcup.data.corrected_handled2.cvs数据的代码 以上两个数据集由文件

    2025-03-11

    python毕业设计-基于卷积神经网络进行网络入侵检测系统源码+文档+数据集(正确率可达99.5%)

    python毕业设计——基于卷积神经网络进行网络入侵检测系统源码+文档+数据集(正确率可达99.5%) IDS-CNN(使用卷积神经网络进行网络入侵检测) handle2.py为数据预处理代码 main.py为一层全连接层处理kddcup.data_10_percent_corrected_handled2.cvs数据代码 cnn_mian.py为卷积神经网络处理kddcup.data.corrected_handled2.cvs数据的代码 以上两个数据集由文件夹中两个.gz文件解压得到 multi_logs文件夹记录了训练过程中TensorFlow中张量的变化及模型准确率和loss的变化日志(tensorbord)IDS-CNN(使用卷积神经网络进行网络入侵检测) handle2.py为数据预处理代码 main.py为一层全连接层处理kddcup.data_10_percent_corrected_handled2.cvs数据代码 cnn_mian.py为卷积神经网络处理kddcup.data.corrected_handled2.cvs数据的代码 以上两个数据集由文件

    2025-03-11

    python毕业设计-基于深度学习的垃圾分类目标检测系统(源码+文档+测试数据)

    一、搭建运行环境(python后端) 安装anconda,创建anconda虚拟环境。 python毕业设计——基于深度学习的垃圾分类目标检测系统(源码+文档) conda换源方法: conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --set show_channel_urls yes 创建虚拟环境: 在终端输入命令(例如heqiaoling是自己虚拟环境的名称) conda create -n heqiaoling python=3.8 激活虚拟环境,在终端输入命令 a

    2025-03-11

    python毕业设计-基于深度学习的垃圾分类目标检测系统(源码+文档)

    一、搭建运行环境(python后端) 安装anconda,创建anconda虚拟环境。 python毕业设计——基于深度学习的垃圾分类目标检测系统(源码+文档) conda换源方法: conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --set show_channel_urls yes 创建虚拟环境: 在终端输入命令(例如heqiaoling是自己虚拟环境的名称) conda create -n heqiaoling python=3.8 激活虚拟环境,在终端输入命令 a

    2025-03-11

    Java毕业设计-基于springboot的校园二手交易市场(前后端源码+文档)

    一、相关技术 后端:Java、JavaWeb / Springboot。 前端:HTML / CSS / Javascript 等。 数据库:MySQL 二、相关软件(列出的软件其一均可运行) IDEA Eclipse Visual Studio Code(VScode) Navicat 等 三、功能描述 系统分为(身份):普通用户、管理员。 普通用户功能: 登录 注册 首页 根据名称和分类检索 二手物品详情页 评论区 个人信息 发布个人闲置物品 购物车 修改密码 安全退出 管理员功能: 登录 首页数据大屏 菜单管理 角色管理 用户管理 日志管理 监控管理 商品类目管理 商品管理 学生管理 评论管理 首页新闻管理 网站设置 安全退出 四、功能图(部分) 普通用户端功能:

    2025-03-11

    基于Javaweb的校园二手交易市场平台(源码+文档)

    校园二手交易市场平台 一、相关技术 后端:Java、JavaWeb / Springboot。 前端:HTML / CSS / Javascript 等。 数据库:MySQL 二、相关软件(列出的软件其一均可运行) IDEA Eclipse Visual Studio Code(VScode) Navicat 等 三、功能描述 系统分为(身份):普通用户、管理员。 普通用户功能: 登录 注册 首页 根据名称和分类检索 二手物品详情页 评论区 个人信息 发布个人闲置物品 购物车 修改密码 安全退出 管理员功能: 登录 首页数据大屏 菜单管理 角色管理 用户管理 日志管理 监控管理 商品类目管理 商品管理 学生管理 评论管理 首页新闻管理 网站设置 安全退出 四、功能图(部分) 普通用户端功能: image.png image.png

    2025-03-11

    基于opencv实现的的全景多层图像拼接系统(源码+文档)

    ImageStitchig 基于opencv 2.49实现的的全景多层图像拼接(opencv仅仅提供单层的拼接) QT+VS2013联合开发,QT用作界面设计 分层导入多张图像,最终输出得到一整张全景图像 主要流程: 1.输入源图像以及程序的参数 2.特征点检测,判断是使用surf还是orb,默认是surf 3.对图像的特征点进行匹配,使用最近邻和次近邻方法,将两个最优的匹配的置信度保存下来。 4.对图像进行排序以及将置信度高的图像保存到同一个集合中,删除置信度比较低的图像间的匹配,得到能正确匹配的图像序列。这样将置信度高于门限的所有匹配合并到一个集合中。 5.对所有图像进行相机参数粗略估计,然后求出旋转矩阵 6.使用光束平均法进一步精准的估计出旋转矩阵。 7.波形校正,水平或者垂直 主要流程: 1.输入源图像以及程序的参数 2.特征点检测,判断是使用surf还是orb,默认是surf 3.对图像的特征点进行匹配,使用最近邻和次近邻方法,将两个最优的匹配的置信度保存下来。 4.对图像进行排序以及将置信度高的图像保存到同一个集合中,删除置信度比较 8.拼接9.融合,多频段融合,光照补偿

    2025-03-11

    Java毕业设计-基于SpringBoot+Vue3前后分离项目的在线考试系统(源码+数据库+文档)

    安装教程 前端采用pnpm包管理工具、后端采用maven管理依赖 启动后端服务(确保安装MySQL以及Redis) 打开exam_springboot项目 利用maven下载依赖 导入数据库脚本online_exam.sql 修改配置exam-springboot/src/main/resources/application.yml 数据库连接 邮箱验证信息 修改username以及password(需要开通邮箱权限,可自行百度) 运行com/zz/Application.java即可 启动前端服务 打开exam_vue项目,执行如下指令: # 安装包依赖 pnpm install # 启动服务 pnpm run dev 说明补充 前后端代码书写风格,分别参考了黑马程序员以及尚硅谷的教学视频

    2025-03-11

    基于SpringBoot+Vue3前后分离项目的在线考试系统(源码+数据库+文档)

    安装教程 前端采用pnpm包管理工具、后端采用maven管理依赖 启动后端服务(确保安装MySQL以及Redis) 打开exam_springboot项目 利用maven下载依赖 导入数据库脚本online_exam.sql 修改配置exam-springboot/src/main/resources/application.yml 数据库连接 邮箱验证信息 修改username以及password(需要开通邮箱权限,可自行百度) 运行com/zz/Application.java即可 启动前端服务 打开exam_vue项目,执行如下指令: # 安装包依赖 pnpm install # 启动服务 pnpm run dev 说明补充 前后端代码书写风格,分别参考了黑马程序员以及尚硅谷的教学视频

    2025-03-11

    毕业设计-基于SpringBoot+vue的在线考试系统(源码+文档+数据库+毕业论文)

    毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目

    2025-03-11

    Java毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文)

    毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 毕业设计-基于SpringBoot的在线考试系统(源码+文档+数据库+毕业论文) 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目

    2025-03-11

    Java+SpringBoot+Vue基于遗传算法的智能组卷平台 - 在线考试系统(源码+数据库+文档)

    基于遗传算法实现智能组卷的在线考试系统源码(高分毕设项目)-springboot+VUE前后端分离 exam 介绍 基于遗传算法的智能组卷平台 -- 在线考试系统(基于武汉学之思) 软件架构 springboot+vue+springsecurity+swagger+redis+mysql 演示地址 前台:http://www.sheep.fit:8001/ 后台:http://www.sheep.fit:8002/ 安装教程 java1.8 mysql5.7 redis4.1 功能列表 学生系统功能 登录、注册: 注册时要选年级,过滤不同年级的试卷, 账号为:student/123456 首页: 任务中心、固定试卷、时段试卷、试卷可以重复做 试卷中心: 包含了所有能做的试卷,按学科来过滤和分页 考试记录: 所有的试卷考试记录在此处分页,可以查看试卷结果、用时、得分、自行批改等 错题本: 所有做错的题目,可以看到做题的结果、分数、难度、解析、正确答案等 个人中心: 个人日志记录 消息: 消息通知 试卷答题和试卷查看: 展示出题目的基本信息和需要填写的内容 管理系统功能 登录:

    2025-03-11

    基于遗传算法实现智能组卷的在线考试系统源码(高分毕设项目)-springboot+VUE前后端分离

    基于遗传算法实现智能组卷的在线考试系统源码(高分毕设项目)-springboot+VUE前后端分离 exam 介绍 基于遗传算法的智能组卷平台 -- 在线考试系统(基于武汉学之思) 软件架构 springboot+vue+springsecurity+swagger+redis+mysql 演示地址 前台:http://www.sheep.fit:8001/ 后台:http://www.sheep.fit:8002/ 安装教程 java1.8 mysql5.7 redis4.1 功能列表 学生系统功能 登录、注册: 注册时要选年级,过滤不同年级的试卷, 账号为:student/123456 首页: 任务中心、固定试卷、时段试卷、试卷可以重复做 试卷中心: 包含了所有能做的试卷,按学科来过滤和分页 考试记录: 所有的试卷考试记录在此处分页,可以查看试卷结果、用时、得分、自行批改等 错题本: 所有做错的题目,可以看到做题的结果、分数、难度、解析、正确答案等 个人中心: 个人日志记录 消息: 消息通知 试卷答题和试卷查看: 展示出题目的基本信息和需要填写的内容 管理系统功能 登录:

    2025-03-11

    Python毕业设计-基于CNN的可视化交通标志识别源码+测试数据+文档

    基于CNN的可视化交通标志识别源码+测试数据+文档(python课设)机器学习课设 交通标志识别 交通标志识别的作用: 有几种不同类型的交通标志,如限速,禁止进入,交通信号灯,左转或右转,儿童交叉口,不通过重型车辆等。交通标志分类是识别交通标志所属类别的过程。 在本项目中,通过构建一个深度神经网络模型,可以将图像中存在的交通标志分类为不同的类别。通过该模型,我们能够读取和理解交通标志,这对所有自动驾驶汽车来说都是一项非常重要的任务。 交通标志数据集: 数据集包含超过50,000张不同交通标志的图像。它被进一步分为43个不同的类。数据集变化很大,一些类有许多图像,而一些类有很少的图像。数据集的大小约为 300 MB。数据集有一个训练文件夹,其中包含每个类中的图像和一个测试文件夹,我们将用于测试我们的模型。 构建此交通标志分类模型的方法分为四个步骤: 浏览分析数据集 构建 CNN 模型并训练 验证模型 使用测试数据集测试模型 步骤1:浏览分析数据集 “train”文件夹包含 43 个文件夹,每个文件夹代表不同的类别。文件夹的范围是从 0 到 42。迭代所有类,并在数据和标签列表中附加图像及

    2025-03-11

    基于CNN的可视化交通标志识别源码+测试数据+文档(python课设)

    基于CNN的可视化交通标志识别源码+测试数据+文档(python课设) 交通标志识别 交通标志识别的作用: 有几种不同类型的交通标志,如限速,禁止进入,交通信号灯,左转或右转,儿童交叉口,不通过重型车辆等。交通标志分类是识别交通标志所属类别的过程。 在本项目中,通过构建一个深度神经网络模型,可以将图像中存在的交通标志分类为不同的类别。通过该模型,我们能够读取和理解交通标志,这对所有自动驾驶汽车来说都是一项非常重要的任务。 交通标志数据集: 数据集包含超过50,000张不同交通标志的图像。它被进一步分为43个不同的类。数据集变化很大,一些类有许多图像,而一些类有很少的图像。数据集的大小约为 300 MB。数据集有一个训练文件夹,其中包含每个类中的图像和一个测试文件夹,我们将用于测试我们的模型。 构建此交通标志分类模型的方法分为四个步骤: 浏览分析数据集 构建 CNN 模型并训练 验证模型 使用测试数据集测试模型 步骤1:浏览分析数据集 “train”文件夹包含 43 个文件夹,每个文件夹代表不同的类别。文件夹的范围是从 0 到 42。迭代所有类,并在数据和标签列表中附加图

    2025-03-11

    机器学习课程设计作业-基于CNN的可视化交通标志识别(python课设)

    机器学习课程设计作业——基于CNN的可视化交通标志识别(python课设)机器学习课设 交通标志识别 交通标志识别的作用: 有几种不同类型的交通标志,如限速,禁止进入,交通信号灯,左转或右转,儿童交叉口,不通过重型车辆等。交通标志分类是识别交通标志所属类别的过程。 在本项目中,通过构建一个深度神经网络模型,可以将图像中存在的交通标志分类为不同的类别。通过该模型,我们能够读取和理解交通标志,这对所有自动驾驶汽车来说都是一项非常重要的任务。 交通标志数据集: 数据集包含超过50,000张不同交通标志的图像。它被进一步分为43个不同的类。数据集变化很大,一些类有许多图像,而一些类有很少的图像。数据集的大小约为 300 MB。数据集有一个训练文件夹,其中包含每个类中的图像和一个测试文件夹,我们将用于测试我们的模型。 构建此交通标志分类模型的方法分为四个步骤: 浏览分析数据集 构建 CNN 模型并训练 验证模型 使用测试数据集测试模型 步骤1:浏览分析数据集 “train”文件夹包含 43 个文件夹,每个文件夹代表不同的类别。文件夹的范围是从 0 到 42。迭代所有类,并在数据和标签列表中附加图

    2025-03-11

    基于YOLOv8的路口交通信号灯通行规则识别模型及算法源代码+文档说明(高分毕设)

    基于YOLOv8的路口交通信号灯通行规则识别模型及算法(部署教程&源码) 1.研究背景与意义 随着城市交通的不断发展和车辆数量的不断增加,交通信号灯的识别系统变得越来越重要。交通信号灯的准确识别对于交通管理、智能交通系统以及自动驾驶等领域具有重要意义。然而,由于交通信号灯的形状、颜色和光照条件的变化,以及复杂的交通场景,交通信号灯的准确识别一直是一个具有挑战性的问题。 目前,基于深度学习的目标检测算法YOLO(You Only Look Once)已经在图像识别领域取得了显著的成果。然而,对于交通信号灯的识别,YOLO算法在准确性和实时性方面仍然存在一定的局限性。另外,OpenCV作为一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法,但是在交通信号灯识别方面的应用还比较有限。 因此,本研究旨在改进YOLO和OpenCV的交通信号灯识别系统,提高其准确性和实时性,并提供部署教程和源码,以便更多的研究人员和工程师能够使用和改进该系统。 本研究的意义主要体现在以下几个方面: 提高交通信号灯识别的准确性:通过改进YOLO算法,引入更多的训练数据和优化网络结构,可以提高交通信

    2025-03-11

    基于YOLOv8的路口交通信号灯通行规则识别模型及算法(部署教程&源码)

    基于YOLOv8的路口交通信号灯通行规则识别模型及算法(部署教程&源码) 1.研究背景与意义 随着城市交通的不断发展和车辆数量的不断增加,交通信号灯的识别系统变得越来越重要。交通信号灯的准确识别对于交通管理、智能交通系统以及自动驾驶等领域具有重要意义。然而,由于交通信号灯的形状、颜色和光照条件的变化,以及复杂的交通场景,交通信号灯的准确识别一直是一个具有挑战性的问题。 目前,基于深度学习的目标检测算法YOLO(You Only Look Once)已经在图像识别领域取得了显著的成果。然而,对于交通信号灯的识别,YOLO算法在准确性和实时性方面仍然存在一定的局限性。另外,OpenCV作为一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法,但是在交通信号灯识别方面的应用还比较有限。 因此,本研究旨在改进YOLO和OpenCV的交通信号灯识别系统,提高其准确性和实时性,并提供部署教程和源码,以便更多的研究人员和工程师能够使用和改进该系统。 本研究的意义主要体现在以下几个方面: 提高交通信号灯识别的准确性:通过改进YOLO算法,引入更多的训练数据和优化网络结构,可以提高交通信

    2025-03-11

    pytorch基于卷积神经网络的面部表情识别项目源代码+训练模型+数据集+文档(python毕业设计)

    毕业设计pytorch基于卷积神经网络的面部表情识别项目源代码+训练模型+数据集+文档 一共有28709个label,说明包含了28709张表情包。 每一行就是一张表情包4848=2304个像素,相当于4848个灰度值(intensity)(0为黑, 255为白) 二、数据预处理 1.标签与特征分离 cnn_feature_label.py 对原数据进行处理,分离后分别保存为cnn_label.csv和cnn_data.csv.() 2.数据可视化 face_view.py 对特征进一步处理,也就是将每个数据行的2304个像素值合成每张48*48的表情图,最后做成24000张表情包。 3.分割训练集和测试集 cnn_picture_label.py Step1:划分一下训练集和验证集。一共有28709张图片,我取前24000张图片作为训练集,其他图片作为验证集。新建文件夹cnn_train和cnn_val,将0.jpg到23999.jpg放进文件夹cnn_train,将其他图片放进文件夹cnn_val. Step2:对每张图片标记属于哪一个类别,存放在dataset.csv中

    2025-03-11

    毕业设计pytorch基于卷积神经网络的面部表情识别项目源代码+训练模型+数据集+文档

    毕业设计pytorch基于卷积神经网络的面部表情识别项目源代码+训练模型+数据集+文档 FERNet 基于深度学习的面部表情识别 (Facial-expression Recognition) 一、项目背景 数据集cnn_train.csv包含人类面部表情的图片的label和feature。在这里,面部表情识别相当于一个分类问题,共有7个类别。 其中label包括7种类型表情: 7-classes 一共有28709个label,说明包含了28709张表情包。 每一行就是一张表情包4848=2304个像素,相当于4848个灰度值(intensity)(0为黑, 255为白) 二、数据预处理 1.标签与特征分离 cnn_feature_label.py 对原数据进行处理,分离后分别保存为cnn_label.csv和cnn_data.csv.() 2.数据可视化 face_view.py 对特征进一步处理,也就是将每个数据行的2304个像素值合成每张48*48的表情图,最后做成24000张表情包。 3.分割训练集和测试集 cnn_picture_label.py Step1:划分一下

    2025-03-11

    python毕业设计-人脸识别之表情识别项目源码+数据集+训练模型+详细教程文档

    人脸表情识别 2020.8.22,重构了整个仓库代码,改用Tensorflow2中的keras api实现整个系统。考虑到很多反映jupyter notebook写的train使用起来不太方便,这里改成了py脚本实现。 简介 使用卷积神经网络构建整个系统,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。 环境部署 基于Python3和Keras2(TensorFlow后端),具体依赖安装如下(推荐使用conda虚拟环境)。 人脸识别之表情识别项目源码+数据集+训练模型+详细教程文档(python毕业设计) conda create -n FER python=3.6 source activate FER conda install cudatoolkit=10.1 conda install cudnn=7.6.5 pip install -r requi

    2025-03-11

    人脸识别之表情识别项目源码+数据集+训练模型+详细教程文档(python毕业设计)

    人脸表情识别 2020.8.22,重构了整个仓库代码,改用Tensorflow2中的keras api实现整个系统。考虑到很多反映jupyter notebook写的train使用起来不太方便,这里改成了py脚本实现。 简介 使用卷积神经网络构建整个系统,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。 环境部署 基于Python3和Keras2(TensorFlow后端),具体依赖安装如下(推荐使用conda虚拟环境)。 人脸识别之表情识别项目源码+数据集+训练模型+详细教程文档(python毕业设计) conda create -n FER python=3.6 source activate FER conda install cudatoolkit=10.1 conda install cudnn=7.6.5 pip install -r requi

    2025-03-11

    Python人脸表情识别系统源码+文档+数据+训练模型+GUI(毕业设计)

    Python人脸表情识别系统源码+文档+数据+训练模型+GUI 介绍 人工智能期末团队选题,人脸表情识别系统 软件架构 软件架构说明 数据集采用的是Fer2013 通过keras进行卷积神经网络模型的训练 通过cv2识别人脸获取图片然后进行表情识别 流程 一、生成模型 1.解析数据集 2.搭建卷积神经网络模型 3.训练卷积神经网络模型 4.保存卷积神经网络模型 二、表情识别 1.预处理图片 2.表情识别 3.GUI展示 4.开启摄像头实时分析照片 安装教程 直接克隆项目到本地即可使用,唯一注意点:如果没有安装keras,那么安装keras的版本要和tensorflow的版本对应 使用说明 选择图片,点击分析即可生成结果分析表。 使用摄像头时,请保证人脸在摄像头中,系统会自动判断你的表情并显示在你的脸下方,同时在GUI中生成你的表情的分析图介绍 人工智能期末团队选题,人脸表情识别系统 软件架构 软件架构说明 数据集采用的是Fer2013 通过keras进行卷积神经网络模型的训练 通过cv2识别人脸获取图片然后进行表情识别 流程 一、生成模型 1.解析数据集 2.搭建卷积神

    2025-03-11

    Python人脸表情识别系统源码+文档+数据+训练模型+GUI

    Python人脸表情识别系统源码+文档+数据+训练模型+GUI 介绍 人工智能期末团队选题,人脸表情识别系统 软件架构 软件架构说明 数据集采用的是Fer2013 通过keras进行卷积神经网络模型的训练 通过cv2识别人脸获取图片然后进行表情识别 流程 一、生成模型 1.解析数据集 2.搭建卷积神经网络模型 3.训练卷积神经网络模型 4.保存卷积神经网络模型 二、表情识别 1.预处理图片 2.表情识别 3.GUI展示 4.开启摄像头实时分析照片 安装教程 直接克隆项目到本地即可使用,唯一注意点:如果没有安装keras,那么安装keras的版本要和tensorflow的版本对应 使用说明 选择图片,点击分析即可生成结果分析表。 使用摄像头时,请保证人脸在摄像头中,系统会自动判断你的表情并显示在你的脸下方,同时在GUI中生成你的表情的分析图介绍 人工智能期末团队选题,人脸表情识别系统 软件架构 软件架构说明 数据集采用的是Fer2013 通过keras进行卷积神经网络模型的训练 通过cv2识别人脸获取图片然后进行表情识别 流程 一、生成模型 1.解析数据集 2.搭建卷积神

    2025-03-11

    Python毕业设计-基于TensorFlow的人脸表情识别项目源码+文档+数据+运行脚本.zip

    基于TensorFlow的人脸表情识别项目源码+文档+数据+运行脚本.zip v0.1 基于TensorFlow1.x的人脸表情识别项目。 v0.2 2020.8.22,重构了整个仓库代码,改用Tensorflow2中的keras api实现整个系统。考虑到很多反映jupyter notebook写的train使用起来不太方便,这里改成了py脚本实现。 v0.3 2020.12.18,根据反馈,修改了Jaffe的优化器设置。 v0.4 增加了人脸检测器blazeface。 简介 使用卷积神经网络构建整个系统,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。 环境部署 基于Python3和Keras2(TensorFlow后端),具体依赖安装如下(推荐使用conda虚拟环境)。 git clone https://github.com/luanshiyinyang/FacialExpressionRecognition.git cd FacialExpressionRecogni

    2025-03-11

    Python基于TensorFlow的人脸表情识别项目源码+文档+数据+运行脚本.zip

    基于TensorFlow的人脸表情识别项目源码+文档+数据+运行脚本.zip v0.1 基于TensorFlow1.x的人脸表情识别项目。 v0.2 2020.8.22,重构了整个仓库代码,改用Tensorflow2中的keras api实现整个系统。考虑到很多反映jupyter notebook写的train使用起来不太方便,这里改成了py脚本实现。 v0.3 2020.12.18,根据反馈,修改了Jaffe的优化器设置。 v0.4 增加了人脸检测器blazeface。 简介 使用卷积神经网络构建整个系统,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。 环境部署 基于Python3和Keras2(TensorFlow后端),具体依赖安装如下(推荐使用conda虚拟环境)。 git clone https://github.com/luanshiyinyang/FacialExpressionRecognition.git cd FacialExpressionRecogni

    2025-03-11

    基于TensorFlow的人脸表情识别项目源码+文档+数据+运行脚本.zip

    基于TensorFlow的人脸表情识别项目源码+文档+数据+运行脚本.zip v0.1 基于TensorFlow1.x的人脸表情识别项目。 v0.2 2020.8.22,重构了整个仓库代码,改用Tensorflow2中的keras api实现整个系统。考虑到很多反映jupyter notebook写的train使用起来不太方便,这里改成了py脚本实现。 v0.3 2020.12.18,根据反馈,修改了Jaffe的优化器设置。 v0.4 增加了人脸检测器blazeface。 简介 使用卷积神经网络构建整个系统,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。 环境部署 基于Python3和Keras2(TensorFlow后端),具体依赖安装如下(推荐使用conda虚拟环境)。 git clone https://github.com/luanshiyinyang/FacialExpressionRecognition.git cd FacialExpressionRecogni

    2025-03-11

    Python基于卷积神经网络的人脸表情识别系统源码+图片素材+测试图片+演示文档视频

    Python基于卷积神经网络的人脸表情识别系统源码+数据集+论文答辩PPT+训练好的模型 项目名称:Emotion-Recognition 介绍 基于深度卷积神经网络实现的人脸表情识别系统,系统程序由Keras, OpenCv, PyQt5的库实现,训练测试集采用fer2013表情库。 主要功能 (1)可以通过从本地图片导入系统,或者直接相机进行拍摄等方法对图片和视频进行处理并分析。 (2)可以切换模型对图片进行处理。 实现原理 (1)表情库的建立 目前,研究中比较常用的表情库主要有:美国CMU机器人研究所和心理学系共同建立的Cohn-Kanade AU-Coded Facial Expression Image Database(简称CKACFEID)人脸表情数据库;fer2013人脸数据集等等,这里我们的系统采用fer2013人脸数据集。 (2)表情识别: ①图像获取:通过摄像头等图像捕捉工具获取静态图像或动态图像序列。 ②图像预处理:图像的大小和灰度的归一化,头部姿态的矫正,图像分割等。(改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类 识别打好基础) (3)

    2025-03-10

    Python基于卷积神经网络的人脸表情识别系统源码+数据集+论文答辩PPT+训练好的模型

    Python基于卷积神经网络的人脸表情识别系统源码+数据集+论文答辩PPT+训练好的模型 项目名称:Emotion-Recognition 介绍 基于深度卷积神经网络实现的人脸表情识别系统,系统程序由Keras, OpenCv, PyQt5的库实现,训练测试集采用fer2013表情库。 主要功能 (1)可以通过从本地图片导入系统,或者直接相机进行拍摄等方法对图片和视频进行处理并分析。 (2)可以切换模型对图片进行处理。 实现原理 (1)表情库的建立 目前,研究中比较常用的表情库主要有:美国CMU机器人研究所和心理学系共同建立的Cohn-Kanade AU-Coded Facial Expression Image Database(简称CKACFEID)人脸表情数据库;fer2013人脸数据集等等,这里我们的系统采用fer2013人脸数据集。 (2)表情识别: ①图像获取:通过摄像头等图像捕捉工具获取静态图像或动态图像序列。 ②图像预处理:图像的大小和灰度的归一化,头部姿态的矫正,图像分割等。(改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类 识别打好基础) (3)

    2025-03-10

    基于Python+Django+Mysql+微信小程序的智能点餐系统(管理端+小程序).zip文件

    Python毕业设计——基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 智能点餐系统 介绍 用户端:uniapp(用于用户点餐) 后端管理:vue3 后端:django4.2+mysql 软件架构 软件架构说明 使用说明 使用django做的服务端,服务端分别处理一个微信小程序端的数据和后台管理的数据。 需要自己配置Mysql数据库名称,以及账号密码,执行数据迁移 最后启动django项目 Python毕业设计——基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 智能点餐系统

    2025-01-14

    Python实现基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件

    Python毕业设计——基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 智能点餐系统 介绍 用户端:uniapp(用于用户点餐) 后端管理:vue3 后端:django4.2+mysql 软件架构 软件架构说明 使用说明 使用django做的服务端,服务端分别处理一个微信小程序端的数据和后台管理的数据。 需要自己配置Mysql数据库名称,以及账号密码,执行数据迁移 最后启动django项目 Python毕业设计——基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 智能点餐系统

    2025-01-14

    Python毕业设计-基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件

    Python毕业设计——基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 智能点餐系统 介绍 用户端:uniapp(用于用户点餐) 后端管理:vue3 后端:django4.2+mysql 软件架构 软件架构说明 使用说明 使用django做的服务端,服务端分别处理一个微信小程序端的数据和后台管理的数据。 需要自己配置Mysql数据库名称,以及账号密码,执行数据迁移 最后启动django项目 Python毕业设计——基于Django+Mysql的智能点餐小程序(管理端+小程序).zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 智能点餐系统

    2025-01-14

    Python大作业-基于Django+MySQL实现的校园智能点餐系统源码+数据库(高分项目) .zip文件

    基于Django+MySQL实现的校园智能点餐系统源码+数据库(高分项目) .zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 校园食堂外送点餐系统 介绍 基于Django和Bootstrap的校园食堂外送点餐系统,实现了普通用户、食堂商家、食堂管理员,以及食堂、商铺、菜品、订单的维护 运行方式 自行配置mysql: 数据库命名为delivery; 运行./mysql中的建表文件; 配置./delivery/delivery/settings.py中的数据库账号名和密码。 在./delivery目录下,运行python manage.py runserver即可启动项目,默认访问路径为http://127.0.0.1:8000/ 。 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定

    2025-01-14

    Python毕业设计-基于Django+MySQL实现的校园智能点餐系统源码+数据库(高分项目) .zip文件

    基于Django+MySQL实现的校园智能点餐系统源码+数据库(高分项目) .zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 校园食堂外送点餐系统 介绍 基于Django和Bootstrap的校园食堂外送点餐系统,实现了普通用户、食堂商家、食堂管理员,以及食堂、商铺、菜品、订单的维护 运行方式 自行配置mysql: 数据库命名为delivery; 运行./mysql中的建表文件; 配置./delivery/delivery/settings.py中的数据库账号名和密码。 在./delivery目录下,运行python manage.py runserver即可启动项目,默认访问路径为http://127.0.0.1:8000/ 。 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定

    2025-01-14

    空空如也

    TA创建的收藏夹 TA关注的收藏夹

    TA关注的人

    提示
    确定要删除当前文章?
    取消 删除
    手机看
    程序员都在用的中文IT技术交流社区

    程序员都在用的中文IT技术交流社区

    专业的中文 IT 技术社区,与千万技术人共成长

    专业的中文 IT 技术社区,与千万技术人共成长

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    客服 返回
    顶部